Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.a) Tính BC,AH;b) Vẽ (A:AH), vẽ HI vuông góc với AC, HI cắt (A) tại M. Chứng minh: CM là tiếp tuyến của (A);c) Vẽ đường kính MG của (A). Chứng minh BG là tiếp tuyến của (A)

Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.a) Tính BC,AH;b) Vẽ (A:AH), vẽ HI vuông góc với AC, HI cắt (A) tại M. Chứng minh: CM là tiếp tuyến của (A);c) Vẽ đường kính MG của (A). Chứng minh BG là tiếp tuyến của (A)

1 Xem trả lời
Hỏi chi tiết
17
0
0
Nguyễn Thị Nhài
13/09/2024 23:07:25

a) Áp dụng định lí Pytago vào \[\Delta ABC\] vuông tại A, ta được:

\[B{C^2} = A{B^2} + A{C^2}\]

\[ \Leftrightarrow B{C^2} = {3^2} + {4^2} = 25\]

hay BC = 5(cm)

Xét \[\Delta ABC\] vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\[AH \cdot BC = AB \cdot AC\]

\[ \Leftrightarrow AH \cdot 5 = 3 \cdot 4 = 12\]

hay AH = 2,4(cm)

Vậy: BC = 5cm; AH = 2,4cm

b) Xét (A) có

AI là một phần đường kính

MH là dây

\[AI \bot MH\] tại I(gt)

Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)

Xét \[\Delta CMI\] vuông tại I và \[\Delta CHI\] vuông tại I có

CI chung

IM = IH(I là trung điểm của MH)

Do đó:\[\Delta CMI = \Delta CHI\] (hai cạnh góc vuông)

Suy ra: CM = CH(hai cạnh tương ứng)

Xét \[\Delta CMA\] và \[\Delta CHA\] có

CM = CH(cmt)

CA chung

AM = AH( = R)

Do đó: \[\Delta CMA = \Delta CHA\left( {c - c - c} \right)\]

Suy ra:\[\widehat {CMA} = \widehat {CHA}\] (Hai góc tương ứng)

mà\[\widehat {CHA} = {90^0}\] (gt)

nên \[\widehat {CMA} = {90^0}\]

hay CM là tiếp tuyến của (A)

251. có bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và là số lẻ

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×