Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.a) Tính BC,AH;b) Vẽ (A:AH), vẽ HI vuông góc với AC, HI cắt (A) tại M. Chứng minh: CM là tiếp tuyến của (A);c) Vẽ đường kính MG của (A). Chứng minh BG là tiếp tuyến của (A)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Áp dụng định lí Pytago vào \[\Delta ABC\] vuông tại A, ta được:
\[B{C^2} = A{B^2} + A{C^2}\]
\[ \Leftrightarrow B{C^2} = {3^2} + {4^2} = 25\]
hay BC = 5(cm)
Xét \[\Delta ABC\] vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\[AH \cdot BC = AB \cdot AC\]
\[ \Leftrightarrow AH \cdot 5 = 3 \cdot 4 = 12\]
hay AH = 2,4(cm)
Vậy: BC = 5cm; AH = 2,4cm
b) Xét (A) có
AI là một phần đường kính
MH là dây
\[AI \bot MH\] tại I(gt)
Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)
Xét \[\Delta CMI\] vuông tại I và \[\Delta CHI\] vuông tại I có
CI chung
IM = IH(I là trung điểm của MH)
Do đó:\[\Delta CMI = \Delta CHI\] (hai cạnh góc vuông)
Suy ra: CM = CH(hai cạnh tương ứng)
Xét \[\Delta CMA\] và \[\Delta CHA\] có
CM = CH(cmt)
CA chung
AM = AH( = R)
Do đó: \[\Delta CMA = \Delta CHA\left( {c - c - c} \right)\]
Suy ra:\[\widehat {CMA} = \widehat {CHA}\] (Hai góc tương ứng)
mà\[\widehat {CHA} = {90^0}\] (gt)
nên \[\widehat {CMA} = {90^0}\]
hay CM là tiếp tuyến của (A)
251. có bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và là số lẻ
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |