Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ∆OEB và ∆OMC
Vi ABCD là hình vuông nên ta có: OB = OC
Và \[\widehat B = \widehat C = 45^\circ \]
BE = CM (gt)
Þ ∆OEB = ∆OMC (c.g.c)
Þ OE = OM và \({\widehat O_1} = {\widehat O_3}\)
Lại có: \({\widehat O_1} + {\widehat O_2} = \widehat {BOC} = 90^\circ \) vì tứ giác ABCD là hình vuông
\({\widehat O_1} + {\widehat O_2} = \widehat {EOM} = 90^\circ \) kết hợp với OE = OM
Þ ∆OEM vuông cân tại O.
b) Tứ giác ABCD là hình vuông Þ AB = CD và AB // CD
AB // CD Þ AB // CN \( \Rightarrow \frac = \frac\) (Theo định lý Ta-lét) (*)
Mà BE = CM (gt) và AB = CD Þ AE = BM thay vào (*)
Ta có: \[\frac = \frac \Rightarrow ME\;{\rm{//}}\;BN\] (theo định lý đảo Ta-lét)
c) Gọi H¢ là giao điểm của OM và BN
Từ ME // BN \[ \Rightarrow \widehat {OME} = \widehat {OH'E}\] (Cặp góc ở vị trí so le trong)
Mà \[\widehat {OME} = 45^\circ \] vì ∆OME vuông cân tại O
\( \Rightarrow \widehat {MH'B} = 45^\circ = \widehat \)
Þ ∆OMC = ∆BMH¢ (g.g)
\( \Rightarrow \frac = \frac{{MH'}}\), kết hợp \( \Rightarrow \widehat {OMB} = \widehat {CMH'}\) (hai góc đối đỉnh)
Þ ∆OMB = ∆CMH¢ (c.g.c) \( \Rightarrow \widehat {OBM} = \widehat {MH'C} = 45^\circ \)
Vậy \(\widehat {BH'C} + \widehat {BH'M} + \widehat {MH'C} = 90^\circ \Rightarrow CH' \bot BN\)
Mà CH ^ BN (H Î BN) Þ H = H¢ hay 3 điểm O, M, H thẳng hàng (đpcm).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |