LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Hai đường trung tuyến BM, CN của tam giác ABC cắt nhau tại điểm G (H.9.75). Chứng minh rằng tam giác GMN đồng dạng với tam giác GBC và tìm tỉ số đồng dạng.

Hai đường trung tuyến BM, CN của tam giác ABC cắt nhau tại điểm G (H.9.75). Chứng minh rằng tam giác GMN đồng dạng với tam giác GBC và tìm tỉ số đồng dạng.

1 trả lời
Hỏi chi tiết
16
0
0

Vì BM, CN là các đường trung tuyến của tam giác ABC nên M, N lần lượt là trung điểm của AC, AB.

Suy ra MN là đường trung bình của tam giác ABC.

Do đó, MN // BC.

Suy ra GMN^=GBC^ (hai góc ở vị trí so le trong).

Mặt khác NGM^=CGB^ (hai góc đối đỉnh).

Do đó, ∆GMN ∽ ∆GBC (g.g).

Vì MN là đường trung bình của tam giác ABC nên BC = 2MN.  

Khi đó, GNGC=GMGB=MNBC=12.

Vậy ∆GMN ∽ ∆GBC với tỉ số đồng dạng bằng 12.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư