LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Một quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu v0 = 500 m/s hợp với phương ngang một góc α. Trong Vật lí, ta biết rằng, nếu bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất thì quỹ đạo của quả đạn tuân theo phương trình \(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \), ở đó g = 9,8 m/s2 là gia tốc trọng trường. a) Tính theo góc bắn α tầm xa mà quả đạn đạt tới (tức là khoảng cách từ vị trí bắn đến điểm chạm đất ...

Một quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu v0 = 500 m/s hợp với phương ngang một góc α. Trong Vật lí, ta biết rằng, nếu bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất thì quỹ đạo của quả đạn tuân theo phương trình \(y = \frac{{ - g}}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \), ở đó g = 9,8 m/s2 là gia tốc trọng trường.

a) Tính theo góc bắn α tầm xa mà quả đạn đạt tới (tức là khoảng cách từ vị trí bắn đến điểm chạm đất của quả đạn ).

b) Tìm góc bắn α để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m.

c) Tìm góc bắn α để quả đạn đạt độ cao lớn nhất.

1 trả lời
Hỏi chi tiết
131
0
0
Nguyễn Thị Sen
13/09 23:19:24

Lời giải:

Vì v0 = 500 m/s, g = 9,8 m/s2 nên ta có phương trình quỹ đạo của quả đạn là

\(y = \frac{{ - 9,8}}{{{{2.500}^2}.{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) hay \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \).

a) Quả đạn chạm đất khi y = 0, khi đó \(\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha = 0\)

\( \Leftrightarrow x\left( {\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}x + \tan \alpha } \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000{{\cos }^2}\alpha .\tan \alpha }}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{2\,500\,000\cos \alpha .\sin \alpha }}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \frac{{1\,250\,000\sin 2\alpha }}\end{array} \right.\)

Loại x = 0 (đạn pháo chưa được bắn).

Vậy tầm xa mà quả đạn đạt tới là \(x = \frac{{1250000\sin 2\alpha }}\) (m).

b) Để quả đạn trúng mục tiêu cách vị trí đặt khẩu pháo 22 000 m thì x = 22 000 m.

Khi đó \(\frac{{1250000\sin 2\alpha }} = 22\,000\)⇔ sin 2α = \(\frac\)

\[ \Leftrightarrow \left[ \begin{array}{l}\alpha \approx 29^\circ 47'36''\\\alpha \approx 60^\circ 12'23''\end{array} \right.\,\,\].

c) Hàm số \(y = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) là một hàm số bậc hai có đồ thị là một parabol có tọa độ đỉnh I(xI; yI) là

\(\left\{ \begin{array}{l}{x_I} = - \frac{b} = - \frac{{\tan \alpha }}{{2.\frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}}} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}\\{y_I} = f\left( \right) = \frac{{ - 49}}{{2\,500\,000{{\cos }^2}\alpha }}{\left( {\frac{{1\,250\,\,000\cos \alpha \sin \alpha }}} \right)^2} + \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}\tan \alpha \end{array} \right.\)

Hay \(\left\{ \begin{array}{l}{x_I} = \frac{{1\,250\,\,000\cos \alpha \sin \alpha }}\\{y_I} = \frac{{625\,\,000{{\sin }^2}\alpha }}\end{array} \right.\)

Do đó, độ cao lớn nhất của quả đạn là \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }}\).

Ta có \({y_{\max }} = \frac{{625\,\,000{{\sin }^2}\alpha }} \le \frac{{625\,000}}\), dấu “=” xảy ra khi sin2 α = 1 hay α = 90°.

Như vậy góc bắn α = 90° thì quả đan đạt độ cao lớn nhất.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư