Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH (H ∈ BC).
a) Chứng minh rằng ΔABH ᔕ ΔCBA, suy ra AB2 = BH.BC.
b) Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng ΔAFE ᔕ ΔABC.
d) Qua A vẽ đường thẳng song song với BC cắt đường thẳng HF tại I. Vẽ IN vuông góc BC tại N. Chứng minh rằng ΔHNF ᔕ ΔHIC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a) Xét tam giác vuông ABH và CBA ta có:
\[\widehat B\] chung
Suy ra ΔABH ᔕ ΔCBA nên \[\frac = \frac\;\] hay AB2 = BH.BC
b) c) Tứ giác AEHF có 4 góc vuông suy ra AEHF là hình chữ nhật
Do đó \[\widehat {AEF} = \widehat {AEH}\]
ΔABH ᔕ ΔCBA nên \[\widehat {EAH} = \widehat {ACB}\]
Xét tam giác AEF và ACB ta có:
\[\widehat A\] chung
\[\widehat {EAH} = \widehat {ACB}\]
Suy ra ΔAEF ᔕ ΔACB (g.g) nên \[\frac = \frac\;\] hay AE.AB = AF.AC
d) Xét tam giác vuông HNI và HFC ta có:
\[\widehat H\] chung
Suy ra ΔHNI ᔕ ΔHFC (g.g)
Nên \[\frac = \frac\;\] hay \[\frac = \frac\]
Xét tam giác HNF và HIC ta có:
\[\widehat H\] chung
\[\frac = \frac\]
Suy ra ΔHNF ᔕ ΔHIC (c.g.c).Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |