Bài tập  /  Bài đang cần trả lời

d) Gọi K là hình chiếu của O trên BC. Chứng minh tỉ số AHOK không đổi và H chạy trên một cung tròn cố định khi A chuyển động trên cung lớn BC.

d) Gọi K là hình chiếu của O trên BC. Chứng minh tỉ số AHOK không đổi và H chạy trên một cung tròn cố định khi A chuyển động trên cung lớn BC.

1 Xem trả lời
Hỏi chi tiết
15
0
0
Tôi yêu Việt Nam
13/09/2024 23:34:56

d) D, E lần lượt là giao của AO và AI với BC.

Do OK // EI nên theo định lí Ta-lét ta có:

EIOK=EGGK⇒EHOK=EGGK

Và EIG^=GOK^ (Hai góc ở vị trí so le trong) (1)

Do OK // EA nên theo định lí Ta-lét ta có:

OKAE=DKDE⇒AEOK=DEDK

Và DOK^=DAE^ (Hai góc ở vị trí đồng vị) (2)

Ta có:

AHOK=AEOK−EHOK=EDDK−EGGK (*)

Tam giác OIA cân tại O do có OI = OA (3)

Từ (1), (2), (3) suy ra GOK^=DOK^

=> OK là đường phân giác của tam giác DOG mà OK cũng là đường cao nên OK là đường trung trực của tam giác DOG cân tại O

=> GK = DK

 Khi đó (*) trở thành: AHOK=EDDK−EGGK=EDGK−EGGK=GDGK=2

Vậy tỉ số AHOK không đổi.

Do BC cố định nên ta luôn xây dựng được một đường tròn (J) là đường tròn ngoại tiếp của tam giác HBC. Vậy nên H luôn chuyển động trên một cung cố định.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×