Tìm 3 số hạng liên tiếp của một cấp số cộng, biết tổng của chúng là 27 và tổng các bình phương của chúng là 293.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi 3 số hạng lần lượt là x, x + d, x + 2d (với d là công sai của cấp số cộng).
Do tổng của chúng là 27 nên ta có: x + x + d + x + 2d = 27
<=> 3x + 3d = 27
<=> x + d = 9
<=> d = 9 – x.
Tổng các bình phương của chúng là 293 nên suy ra:
x2 + (x + d)2 + (x + 2d)2 = 293
<=> x2 + (x + 9 − x)2 + (x + 18 − 2x)2 = 293
<=> x2 + 92 + (18 − x)2 = 293
<=> x2 + 81 + 324 − 36x + x2 = 293
<=> 2x2 − 36x + 112 = 0
<=> x2 − 18x + 56 = 0
<=> (x − 14)(x − 4) = 0
• TH1: Với x = 14, d = −5 thì 3 số hạng cần tìm là 14; 9; 4;
• TH2: Với x = 4, d = 5 thì 3 số hạng cần tìm là 4; 9; 14.
Vậy 3 số hạng liên tiếp cần tìm là 4; 9; 14 hoặc 14; 9; 4.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |