Tính tổng min và max của hàm số: \[y = \sqrt {2 + x} + \sqrt {2 - x} + 2\sqrt {4 - {x^2}} \].
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
ĐKXĐ: −2 ≤ x ≤ 2.
Đặt \(\sqrt {x + 2} = a;\sqrt {2 - x} = b\) (a, b ≥ 0).
\( \Rightarrow \) a2 + b2 = 4.
Ta có: y = a + b + 2ab.
• Tìm min:
\(y = \sqrt {{{\left( {a + b} \right)}^2}} + 2ab = \sqrt {{a^2} + {b^2} + 2ab} + 2ab\)\( = \sqrt {4 + 2ab} + ab\).
Vì a, b ∈ [0; 2] ⇒ ab ≥ 0.
\( \Rightarrow \)\[y \ge \sqrt {4 + 0} + 0 \Leftrightarrow y \ge 2\].
Vậy ymin = 2 ⇔ ab = 0 ⇔ x = ± 2.
• Tìm max:
Áp dụng bất đẳng thức Cô-si, ta có:
\(ab \le \frac{{{{\left( {a + b} \right)}^2}}}{4} \Rightarrow y \le a + b + \frac{{{{\left( {a + b} \right)}^2}}}{2}\) (1)
Tiếp tục áp dụng bất đẳng thức Cô-si:
a2 + b2 ≥ 2ab ⇔ 2(a2 + b2) ≥ (a + b)2
⇔ (a + b)2 ≤ 8 \( \Rightarrow a + b \le 2\sqrt 2 \) (2)
Từ (1) và (2) \( \Rightarrow y \le 2\sqrt 2 + \frac{8}{2} = 4 + 2\sqrt 2 \)
Do đó ymax \( = 4 + 2\sqrt 2 \).
Dấu “=” xảy ra khi a = b \( \Leftrightarrow \sqrt {2 + x} = \sqrt {2 - x} \Leftrightarrow x = 0\).
Vậy ymax + ymin =\(2 + 4 + 2\sqrt 2 = 6 + 2\sqrt 2 \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |