Sử dụng kết quả của câu a, hãy viết P dưới dạng tổng của một đa thức và một phân thức với tử thức và một hằng số. Dùng kết quả đó để tìm tất cả các giá trị nguyên của x để phân thức đã cho có giá trị cũng là số nguyên.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì 4x2 + 2x + 3 = 2x(2x + 1) + 3 nên
\(P = \frac{{4{x^2} + 2x + 3}} = \frac{{2x\left( {2x + 1} \right) + 3}}\) = \(2x + \frac{3}\).
Vì x là số nguyên nên 2x là số nguyên.
Để P là số nguyên thì (2x + 1) ∈ Ư(3) = {1; –1; 3; –3}.
Mà x là số nguyên.
Suy ra x ∈ {0; –1; 1; –2}. Các giá trị này đều thỏa mãn điều kiện \(x \ne - \frac{1}{2}\).
Vậy x ∈ {0; –1; 1; –2}.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |