Cho hình vuông ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA (Hình 6). Đẳng thức nào sau đây đúng?
A. SMNPQ = \[\frac{1}{4}\]SABCD ;
B. SMNPQ = \[\frac{1}{3}\]SABCD ;
C. SMNPQ = SABCD ;
D. SMNPQ = \[\frac{1}{2}\]SABCD .
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án đúng là: D
Vì ABCD là hình vuông và M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA nên
AM = MB = BN = NC = CP = PD = DQ = QA.
Suy ra AM2 + QA2 = MB2 + BN2 = NC2 + CP2 = PD2 + DQ2,
Khi đó MQ2 = MN2 = NP2 = PQ2 hay MQ = MN = NP = PQ,
Do đó tứ giác MNPQ là hình thoi (1)
• Vì AM = AQ nên ∆AMQ vuông cân tại A, suy ra \[\widehat {AMQ}\] = 45°.
• Vì BM = BN nên ∆BMN vuông cân tại B, suy ra \[\widehat {BMN}\] = 45°.
Mà \[\widehat {AMQ}\]+ \[\widehat {QMN}\] + \[\widehat {BMN}\] = 180°, suy ra \[\widehat {QMN}\] = 90° (2)
Từ (1) và (2) suy ra MNPQ là hình vuông.
SABCD = AB2 ; SMNPQ = MQ2
MQ2 = AM2 + QA2 = \[{\left( {\frac{1}{2}AB} \right)^2}\]+ \[{\left( {\frac{1}{2}AD} \right)^2}\]
= \[\frac{1}{4}\]AB2 + \[\frac{1}{4}\]AD2 = \[\frac{1}{4}\]AB2 + \[\frac{1}{4}\]AB2 = \[\frac{1}{2}\]AB2.
Do đó SMNPQ = \[\frac{1}{2}\]SABCD.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |