Cho x, y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của
\(A = \frac{{{x^2} + {y^2} + 1}}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Áp dụng BĐT Cauchy, ta được:
\({x^2} + {y^2} \ge 2\sqrt {{x^2}{y^2}} = 2xy \Rightarrow 2xy \le 2 \Leftrightarrow xy \le 1\)
Khi đó: \(A = \frac{{{x^2} + {y^2} + 1}} \ge \frac = \frac{3}{2}\). Dấu “=” xảy ra khi x = y = 1.
Vậy GTNN của A là \(\frac{3}{2}\) khi x = y = 1.
Lại có \(\left\{ \begin{array}{l}x;\;y \ge 0\\{x^2} + {y^2} = 2\end{array} \right. \Rightarrow 0 \le x;\;y \le \sqrt 2 \)
\[ \Rightarrow {x^2}\left( {x - \sqrt 2 } \right) \le 0 \Rightarrow {x^3} \le {x^2}\sqrt 2 \]
Tương tự: \[{y^3} \le {y^2}\sqrt 2 \].
Mặt khác: x; y ³ 0 Þ xy + 1 ³ 1
\( \Rightarrow A \le \frac{{{a^2}\sqrt 2 + {b^2}\sqrt 2 + 1}}{1} = 1 + 2\sqrt 2 \).
Vậy GTLN của A là \(1 + 2\sqrt 2 \) khi \(\left( {a;\;b} \right) = \left( {0;\;\sqrt 2 } \right)\) và hoán vị.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |