Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hình thang ABCD với hai đáy AB và CD. Giả sử AB < CD.
Kẻ đường thẳng đi qua B song song với AD, cắt CD tại E.
Xét tứ giác ABED có: AB // DE và AD // BE
Do đó ABED là hình bình hành nên AB = DE và AD = BE.
Do AB < CD nên E nằm giữa C và D, do đó EC = DC – DE hay EC = DC ‒ AB. (1)
Trong tam giác BEC có: BE + BC > EC (bất đẳng thức trong tam giác)
Mà AD = BE nên AD + BC > EC (2)
Từ (1), (2) suy ra AD + BC > DC – AB.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |