Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của AB, BC, AC.
a) Chứng minh rằng AE = DF.
b) Gọi I là trung điểm của DE. Chứng minh rằng ba điểm B, I, F thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ∆ABC có: D là trung điểm AB, E là trung điểm BC, nên DE là đường trung bình của ∆ABC.
Suy ra DE // AC và DE = 12AC.
Xét tứ giác ADEF: DE // AF và DE = AF nên tứ giác ADEF là hình bình hành.
Ta lại có DAF^=90° nên tứ giác ADEF là hình chữ nhật.
Suy ra AE = DF.
b) ∆ABC có: D là trung điểm AB, F là trung điểm AC nên DF là đường trung bình của ∆ABC.
Suy ra DF // BC và DF = 12BC = BE.
Xét tứ giác BDFE: DF // BE và DF = BE nên tứ giác BDFE là hình bình hành.
Suy ra hai đường chéo DE và BF cắt nhau tại trung điểm của mỗi đường.
Ta lại có I là trung điểm của DE nên I cũng là trung điểm của BF.
Vậy B, I, F thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |