Cho tam giác nhọn ABC. Các đường cao BE, CD của tam giác ABC cắt nhau tại K. Tìm tâm đường tròn ngoại tiếp mỗi tam giác sau:
a) Tam giác BDE;
b) Tam giác DEC;
c) Tam giác ADE.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi O là trung điểm của BC. Khi đó OB=OC=12BC.
Do BE, CD là các đường cao của tam giác ABC nên BE ⊥ AC, CD ⊥ AB.
Suy ra tam giác BDC vuông ở D và BEC vuông ở E nên OD=12BC=OE
Do đó OB = OD = OC = OE nên O là tâm đường tròn ngoại tiếp tam giác BDE.
b) Do OD = OE = OC nên O là tâm đường tròn ngoại tiếp tam giác DEC.
c) Gọi I là trung điểm của AK.
Do BE ⊥ AC, CD ⊥ AB nên tam giác ADK vuông ở D và tam giác AEK vuông ở E nên khi chứng minh tương tự câu a, ta có IA = IK = IE = ID.
Do đó, I là tâm đường tròn ngoại tiếp tam giác ADE.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |