LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Tìm các đường tiệm cận của đồ thị hàm số sau:

Tìm các đường tiệm cận của đồ thị hàm số sau:

1 trả lời
Hỏi chi tiết
14
0
0
Phạm Văn Bắc
19/09 00:30:53

a) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = −1.

b) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận ngang y = 1 và tiệm cận đứng x = 2.

c) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có đường tiệm cận đứng x = 1 và tiệm cận xiên là đường thẳng y = ax + b đi qua hai điểm (0; 2) và (2; 0).

Giải hệ phương trình \(\left\{ \begin{array}{l}0.a + b = 2\\2a + b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 2\\a =  - 1\end{array} \right.\).

Vậy đường tiệm cận xiên của đồ thị hàm số là y = −x + 2.

d) Quan sát đồ thị hàm số, ta thấy đồ thị hàm số có hai đường tiệm cận xiên.

Đường tiệm cận xiên thứ nhất y = a1x + b1 đi qua hai điểm có tọa độ (0; −3) và (4; 0).

Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_1}.0 + {b_1} =  - 3\\{a_1}.4 + {b_1} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} = \frac{3}{4}\\{b_1} =  - 3\end{array} \right.\\\end{array}\).

Do đó, đường tiệm cận xiên thứ nhất là y = \(\frac{3}{4}x - 3.\)

Đường tiệm cận xiên thứ hai y = a2x + b2 đi qua hai điểm có tọa độ (0; 3) và (4; 0).

Giải hệ phương trình, ta được: \(\begin{array}{l}\left\{ \begin{array}{l}{a_2}.0 + {b_2} = 3\\{a_2}.4 + {b_2} = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a_1} =  - \frac{3}{4}\\{b_1} = 3\end{array} \right.\\\end{array}\).

Do đó, đường tiệm cận xiên thứ hai là: y = \( - \frac{3}{4}x + 3.\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư