Cho hình thang có đáy nhỏ và cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét hình thang cân ABCD có AB ∥ CD như hình bên.
Ta có diện tích hình thang cân ABCD là:
S = \(\frac{1}{2}\left( {AB + CD} \right)AE = \left( {5 + x} \right)\sqrt {25 - {x^2}} \) (0 ≤ x < 5).
S' = \(\frac{{ - 2{x^2} - 5x + 25}}{{\sqrt {25 - {x^2}} }}\)
S' = 0 ⇔ x = 2,5.
Ta có bảng biến thiên như sau:
Do đó, \(\mathop {\max }\limits_{\left[ {0;5} \right)} S = S\left( {\frac{5}{2}} \right) = \frac{{75\sqrt 3 }}{4}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |