Cho hàm số y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1 (m là tham số).
a) Khảo sát và vẽ đồ thị của hàm số khi m = −1.
b) Tìm giá trị của m để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Khi m = −1 ta được: y = −2x3 – x – 2.
Tập xác định: D = ℝ.
Ta có: y' = −6x2 – 1
y' = 0 phương trình vô nghiệm.
Ta có bảng biến thiên:
Hàm số nghịch biến trên ℝ.
Hàm số không cực trị.
Đồ thị hàm số
b) Ta có: y = (m – 1)x3 + 2(m + 1)x2 – x + m – 1
y' = 3(m – 1)x2 + 4(m + 1)x – 1
y'' = 6(m – 1)x + 4(m + 1).
y'' = 0 ⇔ \(\left\{ \begin{array}{l}m - 1 \ne 0\\x = \frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}}\end{array} \right.\).
Để tâm đối xứng của đồ thị hàm số có hoành độ x0 = −2.
⇔ \(\left\{ \begin{array}{l}m - 1 \ne 0\\\frac{{ - 2\left( {m + 1} \right)}}{{3\left( {m - 1} \right)}} = - 2\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}m \ne 1\\2m + 2 = 6m - 6\end{array} \right.\) ⇔ m = 2.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |