Hai xe máy X và Y cùng sản suất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp.
a) Tính xác suất để cả 2 sản phẩm được chọn đều đạt chuẩn.
b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi A là biến cố “Cả 2 sản phẩm lấy ra đều đạt chuẩn” và B là biến cố “Cả 2 sản phẩm đều do máy Y sản xuất”.
Vì trong hộp có chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất nên P(B) = \[\frac{{C_9^2}}{{C_{10}^2}} = 0,8\] và P(\[\overline B \]) = 1 – 0,8 = 0,2.
Do tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90% nên
P(A | B) = 0,9.0,9 = 0,81 và P(A | \[\overline B \]) = 0,9.0,95 = 0,855.
Theo công thức xác suất toàn phần, xác suất cả hai sản phẩm được chọn đều đạt chuẩn là
P(A) = P(B)P(A | B) + P(\[\overline B \])P(A | \[\overline B \]) = 0,8.0,81 + 0,2.0,855 = 0,819.
b) Theo công thức Bayes, xác suất cả 2 sản phẩm đều do máy Y sản xuất, biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn là:
P(B | A) = \[\frac{{P\left( B \right)P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,8.0,81}}{{0,819}} = \frac\] ≈ 0,791.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |