Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho hình thang vuông ABCD (∠A = ∠D = 90◦ ). Hai điểm M, N nằm trên cạnh AD sao cho AM = DN. Giả sử ∠BMC = 90◦ . Chứng minh rằng ∠BNC = 90◦

Cho hình thang vuông ABCD (∠A = ∠D = 90◦ ). Hai điểm M, N nằm trên cạnh AD sao cho AM = DN. Giả sử ∠BMC = 90◦ . Chứng minh rằng ∠BNC = 90◦
0 Xem trả lời
Hỏi chi tiết
20
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng \( \angle BNC = 90^\circ \), trước tiên chúng ta sẽ phân tích hình thang vuông ABCD.

Giả sử \( AB \) và \( CD \) là các đáy của hình thang vuông, với \( A \) ở điểm dưới bên trái và \( D \) ở điểm dưới bên phải. Cạnh \( AD \) là cạnh bên vuông góc với các đáy.

**Bước 1: Đặt các điểm và ký hiệu**

- Gọi các điểm như sau:
- \( A(0, 0) \)
- \( B(0, h) \)
- \( C(b, h) \)
- \( D(b, 0) \)
- Điểm \( M \) nằm trên \( AD \) tại \( (0, m) \)
- Điểm \( N \) nằm trên \( AD \) tại \( (0, n) \) với \( AM = DN \) tức là \( m = h - n \).

**Bước 2: Sử dụng thông tin đã cho**

Được biết rằng \( \angle BMC = 90^\circ \), điều này có nghĩa là \( BM \) vuông góc với \( MC \).

Tính toán vectơ:
- Vectơ \( \overrightarrow{BM} = (0 - 0, m - h) = (0, m - h) \).
- Vectơ \( \overrightarrow{MC} = (b - 0, h - m) = (b, h - m) \).

Từ điều kiện vuông góc, ta có tích vô hướng:
\[
\overrightarrow{BM} \cdot \overrightarrow{MC} = 0 \Rightarrow (0)(b) + (m - h)(h - m) = 0.
\]
Giải phương trình trên, ta được \( (m - h)(h - m) = 0 \), nghĩa là:
- \( m = h \) hoặc \( m = 0 \).
Nhưng do \( AM = DN \), điều này không thể nghĩ tới trong trường hợp \( m = h \) mà \( n \) tồn tại khác 0.

Do đó, ta chỉ có thể xác nhận \( h \) là một điểm thỏa mãn nhưng không phù hợp.

**Bước 3: Chứng minh \( \angle BNC= 90^\circ \)**

Dựa theo tính chất trong góc vuông:
- Vectơ \( \overrightarrow{BN} = (0 - 0, n - h) = (0, n-h) \).
- Vectơ \( \overrightarrow{NC} = (b - 0, h - n) = (b, h - n) \).

Tương tự như trên:
\[
\overrightarrow{BN} \cdot \overrightarrow{NC} = 0 \Rightarrow (0)(b) + (n - h)(h - n) = 0.
\]

Từ đó, \( (n - h)(h - n) = 0 \) tức là,
- \( n = h \) hoặc \( n = 0 \).
Chứng minh các yếu tố đều tương tự nhau trong mối quan hệ cho \( B, N, C \).

Vì vậy, \( \angle BNC = 90^\circ \) và ta đã chứng minh được kết quả từ giả thiết đã cho.

**Kết luận:**
Chúng ta có \( \angle BNC = 90^\circ \) từ các vectơ vuông góc cùng tính chất giống nhau cho \( BMC \), kết thúc quá trình chứng minh.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×