Một hộp chứa 15 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 15. Bạn An lấy ra lần lượt 3 thẻ từ hộp. Thẻ lấy ra không được hoàn lại hộp. Tính xác suất của biến cố: "Lần thứ ba An lấy được thẻ ghi số lẻ, biết rằng lần hai An lấy được thẻ ghi số chẵn" (làm tròn kết quả đến hàng phần trăm).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp số: 0,57.
Gọi Ai là biến cố lần thứ i lấy được thẻ chẵn ( \({\rm{i}} = 1,2,3\) ). Ta cần tính
\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}} \right) = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}}\)
\({\rm{P}}\left( {{{\rm{A}}_1}} \right) = \frac{7},{\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right) = \frac{8},{\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right) = \frac{6} = \frac{3}{7},{\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right) = \frac{7} = \frac{1}{2}\)
\({\rm{P}}\left( {{{\rm{A}}_2}} \right) = {\rm{P}}\left( {{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right) = \frac{7} \cdot \frac{3}{7} + \frac{8} \cdot \frac{1}{2} = \frac{7}\)
\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right)\)
(sử dụng tính chất \({\rm{P}}({\rm{A}}) = {\rm{P}}\left( {{\rm{A}}{{\rm{A}}_1}} \right) + {\rm{P}}\left( {{\rm{A}}\overline {{{\rm{A}}_1}} } \right)\) với \(\left. {{\rm{A}} = \overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)\).
\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\;{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\;{{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_2}\mid {{\rm{A}}_1}} \right){\rm{P}}\left( {{{\rm{A}}_1}} \right)\)
\( = \frac{8} \cdot \frac{6} \cdot \frac{7}\)
\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2} \cdot \overline {{{\rm{A}}_1}} } \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right) = {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {{{\rm{A}}_2}\mid \overline {{{\rm{A}}_1}} } \right){\rm{P}}\left( {\overline {{{\rm{A}}_1}} } \right)\)
\( = \frac{7} \cdot \frac{7} \cdot \frac{8}.\)
\({\rm{P}}\left( {\overline {{{\rm{A}}_3}} \mid {{\rm{A}}_2}} \right) = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}} = \frac{{{\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\;{{\rm{A}}_1}} \right) + {\rm{P}}\left( {\overline {{{\rm{A}}_3}} \;{{\rm{A}}_2}\overline {{{\rm{A}}_1}} } \right)}}{{{\rm{P}}\left( {{{\rm{A}}_2}} \right)}} = \frac{{\frac{8} \cdot \frac{6} \cdot \frac{7} + \frac{7} \cdot \frac{7} \cdot \frac{8}}}{{\frac{7}}}\)
\( = \frac{{\frac}}{{\frac{7}}} = \frac{8} \approx 0,57.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |