Hoạ sĩ thiết kế một micro có dạng khối tròn xoay, mặt cắt đứng chứa trục của khối tròn xoay có dạng như hình sau, trong đó \({\rm{OA}} = {\rm{OB}} = {\rm{OI}} = 2\;{\rm{cm}}\), \({\rm{MC}} = {\rm{MD}} = 1\;{\rm{cm}}\), đường thẳng OM là đường trung trực của đoạn thẳng CD, \({\rm{OM}} = 20\;{\rm{cm}},\widehat {{\rm{AOB}}} = {90^o }.\) Thể tích của micro này là bao nhiêu \({\rm{c}}{{\rm{m}}^3}\) ? (Làm tròn kết quả đến hàng đơn vị)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp số: 117.
Đặt hệ trục Oxy như hình vẽ, đơn vị của mỗi trục là 1 cm. Gọi \({\rm{y}} = {\rm{f}}({\rm{x}})\) là đồ thị bao gồm cung nhỏ KA và đoạn thẳng AC, trong đó \({\rm{A}}(\sqrt 2 ;\sqrt 2 ).\)
\(V = \pi \int { - {2^{20}}} {(f(x))^2}dx = \pi \int_{ - 2}^{\sqrt 2 } {(f(} x){)^2}dx + \pi \int_{\sqrt 2 }^{20} {(f(} x){)^2}dx\)
Vì \({\rm{A}}(\sqrt 2 ;\sqrt 2 ),{\rm{C}}(20;1)\) nên phương trình đường thẳng AC là
\(\frac{{\sqrt 2 - 20}} = \frac{{\sqrt 2 - 1}} \Leftrightarrow y - 1 = (\sqrt 2 - 1)\frac{{\sqrt 2 - 20}} \Leftrightarrow y = \frac{{(1 - \sqrt 2 )x + 19\sqrt 2 }}.\)
Phương trình đường tròn là \({{\rm{x}}^2} + {{\rm{y}}^2} = 4\), hàm số có đồ thị cung nhỏ KA là \(y = \sqrt {4 - {x^2}} ,x \in [ - 2;\sqrt 2 ].\)
\({\rm{V}} = \pi \int_{ - 2}^{\sqrt 2 } {{{\left( {\sqrt {4 - {{\rm{x}}^2}} } \right)}^2}} {\rm{dx}} + \pi \int_{\sqrt 2 }^{20} {{{\left[ {\frac{{(1 - \sqrt 2 ){\rm{x}} + 19\sqrt 2 }}} \right]}^2}} {\rm{dx}}\)
\( = \pi \int_{ - 2}^{\sqrt 2 } {\left( {4 - {{\rm{x}}^2}} \right)} {\rm{dx}} + \pi \int_{\sqrt 2 }^{20} {{{\left[ {\frac{{(1 - \sqrt 2 ){\rm{x}} + 19\sqrt 2 }}} \right]}^2}} {\rm{dx}} \approx 117\left( {\;{\rm{c}}{{\rm{m}}^3}} \right).\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |