Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2}\]. Giá trị của biểu thức \(3M - 2m\) bằng bao nhiêu?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt \[t = \cos x \in \left[ { - 1;\,\,1} \right]\], khi đó \(y = f\left( t \right) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}\).
Xét hàm số \[f\left( t \right) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}\] với \(t \in \left[ { - 1;\,1} \right]\).
Ta có: \[f'\left( t \right) = 8{t^2} - 9t + 3 = 8{\left( {t - \frac{9}} \right)^2} + \frac > 0\,\,\forall t\].
Do đó, hàm số \[f\left( t \right)\] đồng biến trên \(\left[ { - 1;\,1} \right]\).
Suy ra \(M = \max y = \mathop {\max }\limits_{\left[ { - 1;\,1} \right]} f\left( t \right) = f\left( 1 \right) = 1\); \(m = \min y = \mathop {\min }\limits_{\left[ { - 1;\,1} \right]} f\left( t \right) = f\left( { - 1} \right) = - 9\).
Vậy \(3M - 2m = 3 \cdot 1 - 2 \cdot \left( { - 9} \right) = 21\).
Đáp số: \(21\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |