LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Ông Hùng cần đóng một thùng chứa gạo có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc trưng bày gạo bán tại cửa hàng. Do các điều kiện về diện tích cửa hàng và kệ trưng bày, ông Hùng cần thùng có thể tích bằng \(2\) m3. Trên thị trường, giá tôn làm đáy thùng là 100 000 đồng/m2 và giá tôn làm thành xung quanh thùng là 50 000 đồng/m2. Hỏi ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng bao nhiêu mét để chi phí mua nguyên liệu là nhỏ nhất, biết đáy ...

Ông Hùng cần đóng một thùng chứa gạo có dạng hình hộp chữ nhật không có nắp đậy để phục vụ cho việc trưng bày gạo bán tại cửa hàng. Do các điều kiện về diện tích cửa hàng và kệ trưng bày, ông Hùng cần thùng có thể tích bằng \(2\) m3. Trên thị trường, giá tôn làm đáy thùng là 100 000 đồng/m2 và giá tôn làm thành xung quanh thùng là 50 000 đồng/m2. Hỏi ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng bao nhiêu mét để chi phí mua nguyên liệu là nhỏ nhất, biết đáy thùng là hình vuông và các mối nối không đáng kể (làm tròn kết quả đến hàng phần mười).

1 trả lời
Hỏi chi tiết
442
0
0
Tôi yêu Việt Nam
01/10 21:53:32

Gọi độ dài cạnh đáy của thùng chứa gạo là \(x\) (m, \(x > 0\)) và chiều cao của thùng chứa gạo là \(h\) (m, \(h > 0\)).

Thể tích của thùng là \(V = {x^2} \cdot h = 2\), suy ra \(h = \frac{2}{{{x^2}}}\) (m).

Khi đó, diện tích tôn cần sử dụng là: \[S = {x^2} + 4xh = {x^2} + 4x \cdot \frac{2}{{{x^2}}} = {x^2} + \frac{8}{x}\] (m2).

Chi phí để mua nguyên liệu là: \(T = 100{x^2} + 50 \cdot \frac{8}{x} = 100{x^2} + \frac{x}\) (nghìn đồng).

Xét hàm số \(T\left( x \right) = 100{x^2} + \frac{x}\) với \(x \in \left( {0; + \infty } \right)\).

Ta có: \(T'\left( x \right) = 200x - \frac{{{x^2}}} = \frac{{200{x^3} - 400}}{{{x^2}}}\); \(T'\left( x \right) = 0\) khi \(x = \sqrt[3]{2}\).

Bảng biến thiên của hàm số \(T\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Từ bảng biến thiên ta thấy, \(T\left( x \right)\) đạt giá trị nhỏ nhất trên \(\left( {0; + \infty } \right)\) khi \(x = \sqrt[3]{2}\).

Vậy ông Hùng cần đóng thùng chứa gạo với cạnh đáy bằng \(\sqrt[3]{2} \approx 1,3\) m để chi phí mua nguyên liệu là nhỏ nhất.

Đáp số: \(1,3\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan