Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Giải hệ phương trình

----- Nội dung ảnh -----
Câu 4 (2,0 điểm): Giải hệ phương trình
\[
\frac{x^2 + y^2 + 2xy - 1}{x + y} = \sqrt{3x^3 + 33} + \sqrt{2x + y - 1} = 3x + y + 6
\]
0 Xem trả lời
Hỏi chi tiết
60
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải hệ phương trình:

\[
\begin{cases}
\frac{x^2 + y^2}{x + y} = 1 \\
\sqrt{3x^3 + 33 + \frac{3}{2}2x + y - 1} = 3x + y + 6
\end{cases}
\]

**Bước 1:** Giải phương trình đầu tiên.

Từ phương trình đầu tiên:

\[
\frac{x^2 + y^2}{x + y} = 1
\]

Ta có:

\[
x^2 + y^2 = x + y
\]

Rearranging gives:

\[
x^2 - x + y^2 - y = 0
\]

Phương trình này có thể được hiểu là phương trình của hình tròn (hoặc hình elip) đối với các giá trị của \(x\) và \(y\).

**Bước 2:** Phương trình thứ hai.

\[
\sqrt{3x^3 + 33 + 3x + y - 1} = 3x + y + 6
\]

Bình phương cả hai vế:

\[
3x^3 + 33 + 3x + y - 1 = (3x + y + 6)^2
\]

Khi mở ra, ta có:

\[
3x^3 + 3x + y + 32 = 9x^2 + 12xy + y^2 + 36
\]

Giải phương trình này để tìm \(y\) theo \(x\).

**Bước 3:** Kết hợp hai phương trình.

Kết hợp các điều kiện từ phương trình đầu và thứ hai sẽ cho phép ta tìm \(x\) và \(y\).

Thực hiện giải phương trình một cách cụ thể hơn sẽ giúp tìm các giá trị của \(x\) và \(y\).

Bạn có thể sử dụng các phương pháp số hoặc phương pháp đồ thị nếu cần tìm nghiệm gần đúng, hoặc thêm chi tiết về giá trị của \(x\) và \(y\) trong các phương trình để tìm nghiệm chính xác.

Nếu cần hướng dẫn chi tiết từng bước hoặc giải cụ thể, hãy cho tôi biết!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×