Bài tập  /  Bài đang cần trả lời

Chương trình tìm đường đi bằng thuật toán duyệt đô thị theo chiều sâu Yêu cầu: Cho đồ thị G. Hãy viết chương trình tìm đường đi từ đỉnh u đến đỉnh v bằng thuật toán duyệt đồ thị theo chiều sâu. Đồ thị G được biểu diễn bằng danh sách kể. Dữ liệu vào: - Tệp dothi.txt chứa dữ liệu của đồ thị. Hàng đầu tiên là danh sách các đỉnh của đô thị. Các hàng kế tiếp: mỗi hàng chứa một cung gồm đỉnh gốc và đỉnh ngọn. – Đỉnh u và đỉnh v của đường đi. Dữ liệu ra: – Nếu có đường đi từ đỉnh u đến đỉnh v thì hiển ...

Chương trình tìm đường đi bằng thuật toán duyệt đô thị theo chiều sâu

Yêu cầu: Cho đồ thị G. Hãy viết chương trình tìm đường đi từ đỉnh u đến đỉnh v bằng thuật toán duyệt đồ thị theo chiều sâu. Đồ thị G được biểu diễn bằng danh sách kể.

Dữ liệu vào:

- Tệp dothi.txt chứa dữ liệu của đồ thị. Hàng đầu tiên là danh sách các đỉnh của đô thị. Các hàng kế tiếp: mỗi hàng chứa một cung gồm đỉnh gốc và đỉnh ngọn.

– Đỉnh u và đỉnh v của đường đi.

Dữ liệu ra:

– Nếu có đường đi từ đỉnh u đến đỉnh v thì hiển thị các đỉnh của đường đi này. – Nếu không có đường đi thì hiển thị "Không có đường đi".

1 trả lời
Hỏi chi tiết
15
0
0
Trần Đan Phương
04/10 22:26:10

Sử dụng thuật toán duyệt đồ thị theo chiều sâu để tiến hành duyệt tất cả các đỉnh mà u có thể liên kết tới trong đồ thị. Em xây dựng mảng một chiều before với giá trị mặc định của các phần tử là –1 để lưu lại các đỉnh trong quá trình duyệt với quy ước: before[i] = j nghĩa là duyệt đỉnh j trước rồi duyệt đến đỉnh i

def initStack(): return []

def isEmptyStack(stack): return len(stack) == 0 def push(stack, val): stack.append(val) def pop(stack):

return stack.pop() def top(stack):

return stack[len(stack).

ack Rentstack)-Thi sáng tạo

#Tìm đường đi từ đỉnh u đến đỉnh v trong đồ thị dùng DFS #Hàm tìm đường đi giữa u và v sử dụng DFS

def findPathDFS (graph, u, v):

stack = initStack() #Khởi tạo ngăn xếp stack

push(stack, u) #Thêm đỉnh ũ vào stack và đánh dấu đã duyệt visited [vertices.index(u)] = True

#Lập cho đến khi stack rằng while not isEmptyStack(stack): p = top(stack)

found = False

for neighbor in graph[p]:

if not visited[vertices.index(neighbor)]: found = True

break

if found:

visited [vertices.index(neighbor)] = True before [vertices.index(neighbor)] = p if neighbor V:

return createPath(u, v)

else:

else:

push(stack, neighbor)

p = pop(stack)

#Nếu không tìm thấy đường đi từ u đến v, if before[vertices.index(v)] == -1: return None

#Hàm tìm đường đi từ đỉnh u đến đỉnh v def findPath(graph, u, v):

if not u in graph:

print("Không có đỉnh", u)

return

elif not v in graph:

print("Không có đỉnh ", v)

return

global visited, before

visited [False] * len(graph) before [-1] * len(graph)

=

=

path findPathDFS (graph, u, v) return path

#ví dụ minh hoạ

trả về None.

graph, vertices = createAdjListGraph('dothi.txt') #Tạo đồ thị dạng danh sách kề từ tập

u, v

list(map(str, input().split()))

path findPath(graph, u, v)

print (path)

printPath(path, u, v)

Kết quả:

 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Tin học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500K