(9x^3xy^2-2xy^2 +6x^2.y) . (-3xy) Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the given expression \((9x^3y^2 - 2xy^2 + 6x^2y)(-3xy)(9x^3y^2 - 2xy^2 + 6x^2y)(-3xy)\), we can proceed step by step. ### Step 1: Simplifying the Expression First, let's rewrite the expression: \[ (9x^3y^2 - 2xy^2 + 6x^2y)(-3xy)(9x^3y^2 - 2xy^2 + 6x^2y)(-3xy) \] Notice that we have the term \((9x^3y^2 - 2xy^2 + 6x^2y)\) appearing twice. We can denote it as \(A\) for convenience: \[ A = 9x^3y^2 - 2xy^2 + 6x^2y \] Then the expression simplifies to: \[ A \cdot (-3xy) \cdot A \cdot (-3xy) \] Which can be rewritten as: \[ A^2 \cdot (-3xy)^2 \] ### Step 2: Calculating \((-3xy)^2\) Now, calculate \((-3xy)^2\): \[ (-3xy)^2 = 9x^2y^2 \] ### Step 3: Now, Calculate \(A^2\) Now we will expand \(A^2\): \[ A^2 = (9x^3y^2 - 2xy^2 + 6x^2y)(9x^3y^2 - 2xy^2 + 6x^2y) \] For this expansion, we will use the distributive property (or FOIL method for binomials): 1. **First Terms**: \(9x^3y^2 \cdot 9x^3y^2 = 81x^6y^4\) 2. **Outer Terms**: \(9x^3y^2 \cdot (-2xy^2) = -18x^4y^4\) 3. **Inner Terms**: \((-2xy^2) \cdot 9x^3y^2 = -18x^4y^4\) 4. **Last Terms**: \((-2xy^2) \cdot (-2xy^2) = 4x^2y^4\) 5. **Cross Terms** (with \(6x^2y\)): - \(9x^3y^2 \cdot 6x^2y = 54x^5y^3\) - \(6x^2y \cdot 9x^3y^2 = 54x^5y^3\) - \(6x^2y \cdot (-2xy^2) = -12x^3y^4\) - \((-2xy^2) \cdot 6x^2y = -12x^3y^4\) - \(6x^2y \cdot 6x^2y = 36x^4y^2\) ### Collecting Like Terms Now, let's gather all these: \[ A^2 = 81x^6y^4 + (-18x^4y^4 - 18x^4y^4) + (54x^5y^3 + 54x^5y^3) + (-12x^3y^4 - 12x^3y^4) + 36x^4y^2 + 4x^2y^4 \] \[ = 81x^6y^4 - 36x^4y^4 + 108x^5y^3 - 24x^3y^4 + 36x^4y^2 + 4x^2y^4 \] This can be combined into one polynomial: \[ A^2 = 81x^6y^4 + 108x^5y^3 - 36x^4y^4 + 36x^4y^2 - 24x^3y^4 + 4x^2y^4 \] ### Final Expression Now, we can multiply the result \(A^2\) by \(9x^2y^2\): \[ 9x^2y^2(81x^6y^4 + 108x^5y^3 - 36x^4y^4 + 36x^4y^2 - 24x^3y^4 + 4x^2y^4) \] Distributing \(9x^2y^2\) gives: \[ 729x^8y^6 + 972x^7y^5 - 324x^6y^6 + 324x^6y^4 - 216x^5y^6 + 36x^4y^6 \] ### Conclusion The complete simplified expression is: \[ 729x^8y^6 + 972x^7y^5 - 324x^6y^6 + 324x^6y^4 - 216x^5y^6 + 36x^4y^6 \] Feel free to ask if you have further questions!