Bài tập  /  Bài đang cần trả lời

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai. Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau: a) Hàm số đã cho đồng biến trên \(\left( { - 1;\, + \infty } \right)\). b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\). c) Giá trị nhỏ nhất của hàm số đã cho bằng \( - 2\). d) Phương trình \(f\left( x \right) = - \frac{3}{2}\) có ...

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:

a) Hàm số đã cho đồng biến trên \(\left( { - 1;\, + \infty } \right)\).

b) Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\).

c) Giá trị nhỏ nhất của hàm số đã cho bằng \( - 2\).

d) Phương trình \(f\left( x \right) = - \frac{3}{2}\) có 1 nghiệm.

1 Xem trả lời
Hỏi chi tiết
51
0
0
Phạm Văn Phú
10/10/2024 09:39:00

a) S, b) Đ, c) S, d) Đ.

Hướng dẫn giải

Quan sát bảng biến thiên, ta thấy:

– Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {1;\, + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực đại tại \(x = 0\); đạt cực tiểu tại \(x = 1\). Do đó, ý b) đúng.

– Ta có \( - 2 < f\left( x \right)\) nhưng không tồn tại giá trị của \(x\) để \(f\left( x \right) =  - 2\) nên hàm số đã cho không có giá trị nhỏ nhất, vậy ý c) sai.

– Vì \( - 2 <  - \frac{3}{2} <  - 1\) nên từ bảng biến thiên, ta thấy đường thẳng \(y =  - \frac{3}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 1 điểm. Do đó, phương trình \(f\left( x \right) =  - \frac{3}{2}\) có duy nhất 1 nghiệm. Vậy ý d) đúng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×