Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\). Khi đó:
a) \(\overrightarrow {A'D} = \overrightarrow {BC'} \).
b) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {DA} \).
c) \(\overrightarrow {C'A} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \).
d) Góc giữa hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {A'B'} \) bằng \(45^\circ \).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) S, b) S, c) Đ, d) S.
Hướng dẫn giải
– Vì \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên \(A'DCB'\) là hình bình hành.
Do đó, \(\overrightarrow {A'D} = \overrightarrow {B'C} \).
Mà hai vectơ \(\overrightarrow {B'C} \) và \(\overrightarrow {BC'} \) không cùng phương nên hai vectơ \(\overrightarrow {A'D} \) và \(\overrightarrow {BC'} \) cũng không cùng phương. Vậy ý a) sai.
– Theo quy tắc ba điểm, ta có \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} \ne \overrightarrow {DA} \) nên ý b) sai.
– Do \(ABCD.A'B'C'D'\) là hình hộp chữ nhật nên ta có \(\overrightarrow {A'A} = \overrightarrow {C'C} \).
Áp dụng quy tắc hình hộp cho hình hộp chữ nhật \(ABCD.A'B'C'D'\), ta có:
\(\overrightarrow {C'A} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {C'C} = \overrightarrow {C'B'} + \overrightarrow {C'D'} + \overrightarrow {A'A} \). Vậy ý c) đúng.
– Ta có \(\overrightarrow {AD} = \overrightarrow {A'D'} \) nên \(\left( {\overrightarrow {AD} ,\,\overrightarrow {A'B'} } \right) = \left( {\overrightarrow {A'D'} ,\,\overrightarrow {A'B'} } \right) = \widehat {B'A'D'} = 90^\circ \). Vậy ý d) sai.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |