Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}\) có đồ thị \(\left( C \right)\). a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\). b) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm ở hai phía đối với trục tung. c) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x = - 1\); đường tiệm cận xiên là \(y = - x + 2\). d) Đồ thị \(\left( C \right)\) nhận điểm \(I\left( { - 1;3} \right)\) làm tâm đối xứng.

Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}\) có đồ thị \(\left( C \right)\).

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\).

b) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm ở hai phía đối với trục tung.

c) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x = - 1\); đường tiệm cận xiên là \(y = - x + 2\).

d) Đồ thị \(\left( C \right)\) nhận điểm \(I\left( { - 1;3} \right)\) làm tâm đối xứng.

1 Xem trả lời
Hỏi chi tiết
68
0
0
Tô Hương Liên
10/10 09:46:00

a) Đ, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 1}} =  - x + 2 - \frac{1}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{{ - {x^2} - 2x}}{{{{\left( {x + 1} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 2\) hoặc \(x = 0\).

Bảng biến thiên của hàm số như sau:

– Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\). Do đó, ý a) đúng.

– Hàm số đã cho đạt cực đại tại \(x = 0\), ; đạt cực tiểu tại \(x =  - 2\), \({y_{CT}} = 5\). 

Khi đó, điểm cực đại của đồ thị \(\left( C \right)\) là \(\left( {0;1} \right)\) thuộc trục tung. Vậy hai điểm cực trị của đồ thị \(\left( C \right)\) không thể nằm ở hai phía đối với trục tung. Do đó, ý b) sai.

– Tiệm cận:

+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 1\).

+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y =  - x + 2\).

Vậy ý c) đúng.

– Đồ thị \(\left( C \right)\) nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Với \(x =  - 1\) thì \(y =  - \left( { - 1} \right) + 2 = 3\).

Vậy điểm \(I\left( { - 1;3} \right)\) là tâm đối xứng của đồ thị \(\left( C \right)\).

Do đó, ý d) đúng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×