Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Giải phương trình

----- Nội dung ảnh -----
b) \(\frac{6}{x^3+1} - \frac{1-x}{x^2-x+1} = \frac{5}{x+1}\).

Giải:
0 Xem trả lời
Hỏi chi tiết
21
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình sau:

\[
\frac{6}{x^3 + 1} - \frac{1 - x}{x^2 - x + 1} = \frac{5}{x + 1},
\]

ta sẽ thực hiện bước từng bước như sau:

1. **Nêu các điều kiện xác định**:
- \( x^3 + 1 \neq 0 \Rightarrow x \neq -1\).
- \( x^2 - x + 1 \neq 0 \) (biểu thức này luôn dương với mọi giá trị của \( x \)).
- \( x + 1 \neq 0 \Rightarrow x \neq -1\).

2. **Tìm mẫu chung**:
Mẫu chung chính là \( (x^3 + 1)(x^2 - x + 1)(x + 1) \).

3. **Chuyển phương trình về cùng một mẫu**:

Ta nhân tất cả các thành phần trong phương trình với mẫu chung:

\[
6(x^2 - x + 1)(x + 1) - (1 - x)(x^3 + 1)(x + 1) = 5(x^3 + 1)(x^2 - x + 1).
\]

4. **Rút gọn các biểu thức**:
- Tính từng phần và rút gọn:
- Tính \( 6(x^2 - x + 1)(x + 1) \).
- Tính \( (1 - x)(x^3 + 1)(x + 1) \).
- Tính \( 5(x^3 + 1)(x^2 - x + 1) \).

5. **Giải phương trình**:
Sắp xếp lại và rút gọn để tìm \( x \). Sau khi làm phép nhân và rút gọn, bạn sẽ thu được một phương trình đại số có thể giải.

6. **Kiểm tra nghiệm**:
Sau khi tìm được nghiệm \( x \), bạn cần kiểm tra xem nghiệm có thỏa mãn các điều kiện đã nêu ở bước 1 hay không.

Tùy thuộc vào mức độ phức tạp, bạn có thể cần dùng phương pháp tính toán khác (như tính toán cụ thể hay sử dụng máy tính) để giải quyết phần rút gọn và tìm nghiệm chính xác. Nếu bạn cần thêm trợ giúp cụ thể ở bước nào, hãy cho tôi biết!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×