Xét các số phức z thỏa mãn điều kiện \(|z + 1 - 3i| = |z - 1 - i|\) và biểu thức \(P = |\bar z - 3 - i|\).
Mỗi phát biểu sau đây về z và P đúng hay sai?
Đúng | Sai | |
Trong mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức \(\bar z\) là một đường thẳng. | ¡ | ¡ |
Giá trị nhỏ nhất của P bằng \(2\sqrt 2 \). | ¡ | ¡ |
P đạt giá trị nhỏ nhất khi z = zo với phần ảo của số phức zo là 2. | ¡ | ¡ |
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét các số phức z thỏa mãn điều kiện \(|z + 1 - 3i| = |z - 1 - i|\) và biểu thức \(P = |\bar z - 3 - i|\).
Mỗi phát biểu sau đây về z và P đúng hay sai?
Đúng | Sai | |
Trong mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức \(\bar z\) là một đường thẳng. | ¤ | ¡ |
Giá trị nhỏ nhất của P bằng \(2\sqrt 2 \). | ¡ | ¤ |
P đạt giá trị nhỏ nhất khi z = zo với phần ảo của số phức zo là 2. | ¤ | ¡ |
Hướng dẫn giải:
Trong mặt phẳng Oxy, tập hợp biểu diễn các số phức \(z\) là trung trực của đoạn thẳng AB với \(A( - 1;3)\) và \(B(1;1)\)
Vậy, đường thẳng \((d)\) có phương trình \( - x + y = 2\).
Suy ra tập hợp điểm biểu diễn các số phức \(\bar z\) là đường thẳng \(\left( {d'} \right)\) có phương trình \(x + y = - 2\).
(Lấy đối xứng đường thẳng \((d)\) qua trục Ox)
Đặt D(3;1). Với \(P = |\bar z - 3 - i| = |\bar z - (3 + i)|\) nên \(P\) là độ dài khoảng cách giữa \(\bar z\) và \(D\).
\(\min P = \min {d_{(\bar z;D)}} = {d_{\left( {D;\left( {d'} \right)} \right)}} = 3\sqrt 2 \).
Hình chiếu vuông góc của \(D\) xuống \(\left( {d'} \right)\) là điểm \(F(0; - 2)\).
Suy ra số phức \(\bar z\) cần tìm là \( - 2i\).
Vậy \(z = 2i\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |