Trong không gian \(Oxyz\), cho điểm \(I\left( {1;2; - 2} \right)\) và mặt phẳng \(\left( P \right):2x + 2y + z + 5 = 0\). Mặt cầu \(\left( S \right)\) có tâm \(I\) cắt mặt phẳng \(\left( P \right)\) theo một đường tròn có chu vi bằng \(8\pi \).
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu | ĐÚNG | SAI |
Bán kính mặt cầu \(\left( S \right)\) bằng 3. | ¡ | ¡ |
Mặt cầu \(\left( S \right)\) tiếp xúc với mặt phẳng có phương trình \(2x + 2y + z + 11 = 0\). | ¡ | ¡ |
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Phát biểu | ĐÚNG | SAI |
Bán kính mặt cầu \(\left( S \right)\) bằng 3. | ¡ | ¤ |
Mặt cầu \(\left( S \right)\) tiếp xúc với mặt phẳng có phương trình \(2x + 2y + z + 11 = 0\). | ¤ | ¡ |
Giải thích
Gọi \(H\) là hình chiếu của \(I\) trên mặt phẳng \(\left( P \right)\).
Ta có \(IH = d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.1 + 2.2 + 1.\left( { - 2} \right) + 5} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 3\).
Gọi \(r\) là bán kính đường tròn và \(R\) là bán kính mặt cầu.
Ta có chu vi đường tròn là \(2\pi r = 8\pi \Rightarrow r = 4\).
Bán kính mặt cầu là \(R = \sqrt {I{H^2} + {r^2}} = \sqrt {{3^2} + {4^2}} = 5\).
Gọi \(\left( \alpha \right):2x + 2y + z + 11 = 0\).
Ta có \(d\left( {I,\left( \alpha \right)} \right) = \frac{{\left| {2.1 + 2.2 + 1.\left( { - 2} \right) + 11} \right|}}{{\sqrt {{2^2} + {2^2} + {1^2}} }} = 5 = R\).
\( \Rightarrow \left( S \right)\) tiếp xúc với \(\left( \alpha \right)\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |