Cho tam giác nhọn ABC có các đường cao BE, CF. Một đường tròn (O) đi qua hai điểm E, F và cắt các tia đối của hai tia BF, CE lần lượt tại X và Y. Chứng minh rằng XY song song với BC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì các tam giác vuông BED và BFC có chung cạnh huyền BC nên bốn điểm B, F, E, C cùng nằm trên đường tròn đường kính BC.
Do đó BFEC là tứ giác nội tiếp đường tròn bán kính BC.
Vì tổng các góc đối nhau của các tứ giác nội tiếp BFEC và XFEY bằng 180° nên ta có:
FBC^=180°−FEC^=180°−FEY^=FXY^.
Do đó BC // XY (do hai góc đồng vị bằng nhau).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |