Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) có đồ thị hàm số \(\left( C \right)\). Mỗi phát biểu sau đây là đúng hay sai? Phát biểu Đúng Sai Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt. Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại đúng hai điểm có hoành độ lớn hơn 1.

Cho hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) có đồ thị hàm số \(\left( C \right)\). Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

Đúng

Sai

Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt.

Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành

tại đúng hai điểm có hoành độ lớn hơn 1.

1 Xem trả lời
Hỏi chi tiết
14
0
0

Đáp án

Phát biểu

Đúng

Sai

Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt.

  X

Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành

tại đúng hai điểm có hoành độ lớn hơn 1.

  X

Giải thích

Phương trình hoành độ giao điểm \({x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4 = 0\left( {\rm{*}} \right)\)

+ Với \(m = 2 \Rightarrow \) Phương trình \(\left( {\rm{*}} \right)\) trở thành:

\({x^4} - 4{x^3} + 8x + 4 = 0 \Leftrightarrow {\left( {{x^2} - 2x - 2} \right)^2} = 0 \Leftrightarrow x = 1 \pm \sqrt 3 \)

(Hoặc sử dụng máy tính ta tìm được 2 nghiệm của \(x\) thỏa mãn phương trình)

\( \Rightarrow \) Đồ thị hàm số \(\left( C \right)\) cắt trục hoành tại 2 điểm phân biệt.

+ Ta thấy \(x = 0\) không là nghiệm của \(\left( {\rm{*}} \right)\) nên với \(x \ne 0\) ta có:

\(\left( {\rm{*}} \right) \Leftrightarrow {x^4} - 4{x^3} + 8x + 4 = \left( {2 - m} \right){x^2}\)

\( \Leftrightarrow 2 - m = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}{\rm{\;}}\left( {{\rm{**}}} \right)\)

Đồ thị hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) cắt trục hoành tại đúng hai điểm có hoành độ

lớn hơn \(1 \Leftrightarrow \left( {\rm{*}} \right)\) có đúng hai nghiệm lớn hơn \(1 \Leftrightarrow \left( {{\rm{**}}} \right)\) có đúng hai nghiệm lớn hơn 1 .

\( \Leftrightarrow \) Đường thẳng \(y = 2 - m\) cắt đồ thị hàm số \(\left( C \right):y = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}\) tại hai điểm phân biệt có hoành độ lớn hơn 1.

Xét hàm số \(y = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}\) trên \(\left( {1; + \infty } \right)\).

\( \Rightarrow y' = 2x - 4 - \frac{8}{{{x^2}}} - \frac{8}{{{x^3}}} = \frac{{2{x^4} - 4{x^3} - 8x - 8}}{{{x^2}}}\).

Cho \(\left. {y' = 0 \Leftrightarrow 2{x^4} - 4{x^3} - 8x - 8 = 0 \Leftrightarrow \left( {{x^2} + 2} \right)\left( {{x^2} - 2x - 2} \right.} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 - \sqrt 3 \,\,(L)\,\,\,\,}\\{x = 1 + \sqrt 3 \,\,(t/m)}\end{array}} \right.\).

Bảng biến thiên

Dựa vào bảng biến thiên ta thấy, ycbt \( \Leftrightarrow 0 < 2 - m < 9 \Leftrightarrow  - 7 < m < 2\).

Vì \(m\) nguyên nên \(m \in \left\{ { - 6, - 5, \ldots ,1} \right\}\).

Vậy có 8 giá trị nguyên của m thỏa mãn bài toán.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×