Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) __ lần mỗi năm và mỗi lần đặt (2) ___ chiếc tivi để chi phí hàng tồn kho là thấp nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đáp án
Một cửa hàng điện máy có doanh số bán lẻ tivi mỗi năm là 2500 chiếc. Chi phí lưu kho của mỗi chiếc tivi là 200 nghìn đồng một năm. Để đặt hàng nhà sản xuất, mỗi lần cửa hàng cần đặt cọc cố định là 10 triệu đồng và sau khi nhập hàng thì cần trả thêm 3 triệu đồng mỗi chiếc tivi. Biết rằng số lượng tivi trung bình gửi trong kho bằng một nửa số tivi của mỗi lần đặt hàng. Cửa hàng nên đặt hàng nhà sản xuất (1) ___5___ lần mỗi năm và mỗi lần đặt (2) __500__ chiếc tivi để chi phí hàng tồn kho là thấp nhất.
Giải thích
Gọi \(x\) là số tivi mỗi lần đặt hàng \(\left( {x \in \mathbb{N},x \in \left[ {1;2500} \right]} \right)\).
Khi đó, số lượng tivi trung bình gửi trong kho sẽ là \(\frac{x}{2}\). Do đó, chi phí gửi hàng trong kho mỗi năm sẽ là \(0,2.\frac{x}{2} = \frac{x}\).
Số lần đặt hàng mỗi năm sẽ là \(\frac{x}\).
Do đó chi phí đặt hàng mỗi năm sẽ là \(\left( {10 + 3x} \right).\frac{x} = \frac{x} + 7500\).
Suy ra, chi phí hàng tồn kho là \(C\left( x \right) = \frac{x} + \frac{x} + 7500\).
Bài toán trở thành tìm giá trị nhỏ nhất của \(C\left( x \right)\) với \(x \in \left[ {1;2500} \right]\).
Ta có: \(C'\left( x \right) = \frac{1} - \frac{{{x^2}}},C'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 500}\\{x = - 500\left( L \right)}\end{array}} \right.\)
Bảng biến thiên:
Vậy \(\mathop {{\rm{min}}}\limits_{\left[ {1;2500} \right]} C\left( x \right) = C\left( {500} \right) = 7600\)
Khi đó số lần đặt hàng mỗi năm sẽ là \(\frac = 5\) lần.
Vậy để chi phí hàng tồn kho là nhỏ nhất thì cửa hàng cần đặt hàng 5 lần mỗi năm và 500 cái mỗi lần.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |