|3x + 1| + |3x - 5| = 12/y + 3)^2 + 2 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \[ |3x + 1| + |3x - 5| = \frac{12}{(y + 3)^2} + 2, \] we need to break it down into parts: ### Step 1: Set Up Cases for the Absolute Values The expressions \( |3x + 1| \) and \( |3x - 5| \) change based on the value of \( x \). 1. **Case 1**: \( x < -\frac{1}{3} \) - Here, \( |3x + 1| = -(3x + 1) = -3x - 1 \) - \( |3x - 5| = -(3x - 5) = -3x + 5 \) - So the equation becomes: \[ -3x - 1 - 3x + 5 = \frac{12}{(y + 3)^2} + 2 \] 2. **Case 2**: \( -\frac{1}{3} \leq x < \frac{5}{3} \) - Here, \( |3x + 1| = 3x + 1 \) - \( |3x - 5| = -(3x - 5) = -3x + 5 \) - The equation becomes: \[ 3x + 1 - 3x + 5 = \frac{12}{(y + 3)^2} + 2 \] 3. **Case 3**: \( x \geq \frac{5}{3} \) - Here, \( |3x + 1| = 3x + 1 \) - \( |3x - 5| = 3x - 5 \) - The equation becomes: \[ 3x + 1 + 3x - 5 = \frac{12}{(y + 3)^2} + 2 \] ### Step 2: Solve Each Case Now let's solve each case: #### Case 1: \[ -6x + 4 = \frac{12}{(y + 3)^2} + 2. \] This simplifies to: \[ -6x + 2 = \frac{12}{(y + 3)^2}. \] #### Case 2: \[ 6 = \frac{12}{(y + 3)^2} + 2 \implies 4 = \frac{12}{(y + 3)^2} \implies (y + 3)^2 = 3. \] #### Case 3: \[ 6x - 4 = \frac{12}{(y + 3)^2} + 2 \implies 6x - 6 = \frac{12}{(y + 3)^2}. \] ### Step 3: Find Solutions for \( y \) 1. **Case 1 and Case 3** can be solved based on specific values of \( x \). 2. **Case 2** gives us: \[ y + 3 = \pm \sqrt{3} \implies y = -3 \pm \sqrt{3}. \] ### Final Answer The potential solutions for \( y \) will thus depend on the values of \( x \), and you will need to consider the constraints you've put in place for each case to find specific \( x, y \) pairs that satisfy the original equation. After solving for all cases: - For Case 2 in particular, we find the values of \( y \) as \( y = -3 \pm \sqrt{3} \). Do further calculations to analyze \( x \) values in connection to \( y \).