Bài tập  /  Bài đang cần trả lời

Rút gọn phân thức: \(\frac{2xy^4}{4x^4y^2}\)

----- Nội dung ảnh -----
Bài 1. (1,0 điểm) Rút gọn phân thức:
a) \(\frac{2xy^4}{4x^4y^2}\)
b) \(\frac{x^3 + 2x}{x^2 + 2}\)

Bài 2. (1,5 điểm) Thực hiện phép tính:
a) \((x+1)^2 - x^2 - 2x\)
b) \(\frac{x^2 + 4x}{x + 4}\)
c) \(\frac{4}{x + 2} - \frac{3}{x - 2} + \frac{12}{x^2 - 4}\)

Bài 3. (1,5 điểm) Phân tích đa thức thành nhân tử:
a) \(x^2 - 6xy + 9y^2\)
b) \(x^2 - 9y^2\)
c) \(4x - 4 - x^2\)
2 Xem trả lời
Hỏi chi tiết
6
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để rút gọn phân thức \(\frac{2xy^4}{4x^4y^2}\), ta làm như sau:

1. Phân tích cả tử số và mẫu số:
- Tử số: \(2xy^4\) có thể viết là \(2 \cdot x \cdot y^4\).
- Mẫu số: \(4x^4y^2\) có thể viết là \(4 \cdot x^4 \cdot y^2\).

2. Thực hiện rút gọn các yếu tố:
- Rút gọn hệ số: \(\frac{2}{4} = \frac{1}{2}\).
- Rút gọn \(x\): Trong tử có \(x^{1}\), trong mẫu có \(x^{4}\) nên sẽ còn \(x^{4-1} = x^{3}\) ở mẫu.
- Rút gọn \(y\): Trong tử có \(y^{4}\), trong mẫu có \(y^{2}\) nên sẽ còn \(y^{4-2} = y^{2}\) ở tử.

3. Đặt lại phân thức sau khi rút gọn:
\[
\frac{2xy^4}{4x^4y^2} = \frac{1 \cdot y^{4-2}}{2 \cdot x^{4-1}} = \frac{y^2}{2x^3}
\]

Vậy phân thức rút gọn là:
\[
\frac{y^2}{2x^3}
\]
0
0
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
ka_chill
hôm qua
+4đ tặng

a) 2xy4x4y2\frac{2xy}{4x^4y^2}4x4y22xy​

Để rút gọn phân thức, ta tìm các yếu tố chung ở tử số và mẫu số:

2xy4x4y2=24⋅xx4⋅yy2\frac{2xy}{4x^4y^2} = \frac{2}{4} \cdot \frac{x}{x^4} \cdot \frac{y}{y^2}4x4y22xy​=42​⋅x4x​⋅y2y​

Rút gọn các hệ số và biến:

24=12,xx4=1x3,yy2=1y\frac{2}{4} = \frac{1}{2}, \quad \frac{x}{x^4} = \frac{1}{x^3}, \quad \frac{y}{y^2} = \frac{1}{y}42​=21​,x4x​=x31​,y2y​=y1​

Vậy phân thức rút gọn là:

12x3y\frac{1}{2x^3y}2x3y1​

b) x3+2xx2+2\frac{x^3 + 2x}{x^2 + 2}x2+2x3+2x​

Ở đây, ta không thể rút gọn thêm vì không có yếu tố chung giữa tử và mẫu. Do đó, phân thức này đã ở dạng đơn giản nhất.

Bài 2: Thực hiện phép tính

a) (x+1)2−x2−2x(x + 1)^2 - x^2 - 2x(x+1)2−x2−2x

Ta sẽ thực hiện khai triển và rút gọn biểu thức:

(x+1)2=x2+2x+1(x + 1)^2 = x^2 + 2x + 1(x+1)2=x2+2x+1

Do đó, ta có:

(x+1)2−x2−2x=x2+2x+1−x2−2x(x + 1)^2 - x^2 - 2x = x^2 + 2x + 1 - x^2 - 2x(x+1)2−x2−2x=x2+2x+1−x2−2x

Rút gọn:

x2−x2+2x−2x+1=1x^2 - x^2 + 2x - 2x + 1 = 1x2−x2+2x−2x+1=1

Vậy kết quả là: 1\boxed{1}1​.

b) x2+4xx+4\frac{x^2 + 4x}{x + 4}x+4x2+4x​

Ta có thể phân tích tử số:

x2+4x=x(x+4)x^2 + 4x = x(x + 4)x2+4x=x(x+4)

Do đó, biểu thức trở thành:

x(x+4)x+4\frac{x(x + 4)}{x + 4}x+4x(x+4)​

Nếu x+4≠0x + 4 \neq 0x+4=0, ta có thể rút gọn:

xxx

Vậy kết quả là: x\boxed{x}x​.

c) 4x+2−3x−2+12x2−41\frac{4x + 2 - 3x - 2 + 12x^2 - 4}{1}14x+2−3x−2+12x2−4​

Ta sẽ rút gọn biểu thức trong tử số:

4x+2−3x−2+12x2−4=12x2+x−44x + 2 - 3x - 2 + 12x^2 - 4 = 12x^2 + x - 44x+2−3x−2+12x2−4=12x2+x−4

Vậy kết quả là:

12x2+x−412x^2 + x - 412x2+x−4

Bài 3: Phân tích đa thức thành nhân tử

a) x2−6xy+9y2x^2 - 6xy + 9y^2x2−6xy+9y2

Biểu thức này có dạng của một bình phương của một nhị thức:

x2−6xy+9y2=(x−3y)2x^2 - 6xy + 9y^2 = (x - 3y)^2x2−6xy+9y2=(x−3y)2

Vậy phân tích thành nhân tử là:

(x−3y)2(x - 3y)^2(x−3y)2

b) x2−9y2x^2 - 9y^2x2−9y2

Đây là một biểu thức có dạng của hiệu hai bình phương:

x2−9y2=(x−3y)(x+3y)x^2 - 9y^2 = (x - 3y)(x + 3y)x2−9y2=(x−3y)(x+3y)

Vậy phân tích thành nhân tử là:

(x−3y)(x+3y)(x - 3y)(x + 3y)(x−3y)(x+3y)

c) 4x−4−x24x - 4 - x^24x−4−x2

Ta viết lại theo dạng chuẩn của đa thức:

4x−4−x2=−x2+4x−44x - 4 - x^2 = -x^2 + 4x - 44x−4−x2=−x2+4x−4

Ta có thể nhóm các hạng tử và phân tích:

−x2+4x−4=−(x2−4x+4)-x^2 + 4x - 4 = -(x^2 - 4x + 4)−x2+4x−4=−(x2−4x+4)

Biểu thức trong dấu ngoặc là một bình phương hoàn chỉnh:

x2−4x+4=(x−2)2x^2 - 4x + 4 = (x - 2)^2x2−4x+4=(x−2)2

Vậy phân tích thành nhân tử là:

−(x−2)2-(x - 2)^2−(x−2)2

Tóm tắt kết quả:

  • Bài 1: a) 12x3y\frac{1}{2x^3y}2x3y1​; b) x3+2xx2+2\frac{x^3 + 2x}{x^2 + 2}x2+2x3+2x​
  • Bài 2: a) 111; b) xxx; c) 12x2+x−412x^2 + x - 412x2+x−4
  • Bài 3: a) (x−3y)2(x - 3y)^2(x−3y)2; b) (x−3y)(x+3y)(x - 3y)(x + 3y)(x−3y)(x+3y); c) −(x−2)2-(x - 2)^2−(x−2)2



 

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×