Bài tập  /  Bài đang cần trả lời

Tìm x biết

----- Nội dung ảnh -----
Bài 2: Tìm x biết

\[
x + \frac{1}{3} = \frac{2}{5} - \left(-\frac{1}{3}\right)
\]

\[
|1 - x| = \frac{9}{25} = \left(\frac{4}{5}\right)^2
\]

\[
\frac{1}{3} : x = 2 : \frac{2}{3} = (-0,3)
\]

\[
\left( x + \frac{1}{3} \right)^2 = \frac{9}{16}
\]

\[
\frac{2 - x}{4} = \frac{3x - 1}{3}
\]

\[
\left( \frac{2}{7} - \frac{3}{7} |x| \right) \cdot (\sqrt{x - 2}) = 0 \quad (với \, x \geq 0)
\]
1 Xem trả lời
Hỏi chi tiết
12
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị của \( x \), ta sẽ giải từng phương trình trong bài toán.

1. **Phương trình**:
\[
x + \frac{1}{3} = \frac{2}{5} \left( -\frac{1}{3} \right)
\]
Giải:
\[
x + \frac{1}{3} = -\frac{2}{15} \Rightarrow x = -\frac{2}{15} - \frac{1}{3} = -\frac{2}{15} - \frac{5}{15} = -\frac{7}{15}
\]

2. **Phương trình**:
\[
|1 - x| = \frac{9}{25} \left( \frac{4}{5} \right)^2
\]
Tính:
\[
|1 - x| = \frac{9}{25} \cdot \frac{16}{25} = \frac{144}{625}
\]
Giải hệ:
\[
1 - x = \frac{144}{625} \quad \text{hoặc} \quad 1 - x = -\frac{144}{625}
\]
Từ đây ta có:
- \( x = 1 - \frac{144}{625} = \frac{481}{625} \)
- \( x = 1 + \frac{144}{625} = \frac{769}{625} \)

3. **Phương trình**:
\[
\left( x + \frac{1}{3} \right)^2 = \frac{9}{16}
\]
Từ đó tính:
\[
x + \frac{1}{3} = \frac{3}{4} \quad \text{hoặc} \quad x + \frac{1}{3} = -\frac{3}{4}
\]
Giải cho mỗi trường hợp:
- \( x = \frac{3}{4} - \frac{1}{3} = \frac{9}{12} - \frac{4}{12} = \frac{5}{12} \)
- \( x = -\frac{3}{4} - \frac{1}{3} = -\frac{9}{12} - \frac{4}{12} = -\frac{13}{12} \)

4. **Phương trình**:
\[
\frac{2 - x}{4} = \frac{3x - 1}{3}
\]
Giải:
\[
3(2 - x) = 4(3x - 1) \Rightarrow 6 - 3x = 12x - 4 \Rightarrow 6 + 4 = 12x + 3x \Rightarrow 10 = 15x \Rightarrow x = \frac{2}{3}
\]

5. **Phương trình**:
\[
\left( \frac{2}{7} \cdot \frac{3}{7} |x| \right) \cdot (\sqrt{x - 2}) = 0 \quad \text{(với } x \geq 0\text{)}
\]
Để phương trình này bằng 0 thì ít nhất một trong các nhân tố phải bằng 0:
- \( \sqrt{x - 2} = 0 \Rightarrow x - 2 = 0 \Rightarrow x = 2 \)
- Hoặc \( x = 0 \) (thỏa mãn điều kiện).

**Kết quả cuối cùng**: Các giá trị của \( x \) từ mỗi phương trình trên là:
- \( x = -\frac{7}{15} \)
- \( x = \frac{481}{625} \) hoặc \( x = \frac{769}{625} \)
- \( x = \frac{5}{12} \) hoặc \( x = -\frac{13}{12} \)
- \( x = \frac{2}{3} \)
- \( x = 2 \) hoặc \( x = 0 \)

Tổng hợp lại, các giá trị của \( x \) là:
- \( -\frac{7}{15}, \frac{481}{625}, \frac{769}{625}, \frac{5}{12}, \frac{2}{3}, 2, 0 \).
1
0
Chou
06/01 14:11:34
+4đ tặng
|1 - 9/25x| = (4/5)^2
Trường hợp 1:
1 - 9/25x ≥ 0
1 - 9/25x = 16/25
9/25x = -7/25
x = -7/9
Trường hợp 2:
1 - 9/25x < 0
-(1 - 9/25x) = 16/25
9/25x = 21/25
x = 7/3
Vậy phương trình có 2 nghiệm: x = -7/9 và x = 7/3.
Phương trình 3:
(2 - x)/4 = (3x - 1)/3
3(2 - x) = 4(3x - 1)
6 - 3x = 12x - 4
15x = 10
x = 2/3
Phương trình 4:
1/3 : x = 2/3 : (-0.3)
x = (1/3 * -0.3) / (2/3)
x = -0.1
Phương trình 5:
(x + 1/3)^2 = 9/16
x + 1/3 = ±3/4
Trường hợp 1: x + 1/3 = 3/4
x = 5/12
Trường hợp 2: x + 1/3 = -3/4
x = -13/12
Phương trình 6:
(2/7 : 3/7) * √(6x - 2) = 0 (với x ≥ 0)
2/3 * √(6x - 2) = 0
√(6x - 2) = 0
6x - 2 = 0
x = 1/3

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×