Bài 4: Cho hình bình hành ABCD có E,F theo thứ tự là trung điểm của AB,CD.
a) C/m tứ giác DEBF là hình bình hành
b)C/m rằng các đường thẳng AC,BD,EF cùng cắt nhau tại điểm O.
c) Gọi giao điểm AC với DE,BF theo thứ tự là M và N. Tứ giác EMFN là gì? VÌ SAO?
d) khi tam giác OAB vuông tại O và tam giác OAE cân tại E. c/m rằng ABCD là hình vuông.
mik cần gấp lắm nha:>>
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Xét tứ giác DEBF, ta có:
AB // CD (gt) hay DF // EB
EB = 1/2 AB (gt)
DF = 1/2 CD (gt)
Suy ra: EB = DF
Tứ giác DEBF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).
b. Gọi O là giao điểm của AC và BD.
Ta có: OB = OD (tính chất hình bình hành)
Tứ giác DEBF là hình bình hành nên EF và BD cắt nhau tại trung điểm của mỗi đường.
Suy ra: EF đi qua trung điểm O của BD.
Vậy AC, BD và EF cắt nhau tại O trung điểm của mỗi đoạn.
c. Xét ΔEOM và ΔFON có: ∠(MEO) = ∠(NFO) (so le trong)
OE = OF (tính chất hình bình hành)
Suy ra: ΔEOM = ΔFON (g.c.g) ⇒ OM = ON
Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |