Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có ba góc nhọn, đường cao AH vuông góc vs BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA= HD. Chứng minh rằng BC là tia phân giác của góc ABD

Cho tam giác ABC có ba góc nhọn, đường cao AH vuông góc vs BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD a, chứng minh rằng BC là tiq phân giác của góc ABD b, chứng minh rằng CA=CD

1 Xem trả lời
Hỏi chi tiết
787
1
1
Dung Hiền
29/12/2019 12:20:44
Xét AHB và DBH có:
BH là cạnh chung
AHB^=DHB^=900
AH=HD (gt)
Vậy AHB = DBH(c.g.c)
Ta có AHB = DBH (CMT)
do tính chất 2 tam giác bằng nhau nên
ABH^=HBD^
=>BC là tia phân giác của góc ABD

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×