Cho tam giác ABC vuông tại A đường cao AH.Gọi D là điểm đối xứng với H qua AB ,gọi E là điểm đối xứng với H qua AB
A, chứng minh rằng D đối xứng với E qua A
B,tam giác DHE là tam giác gì ? Vì sao
C, chứng minh rằng BC=BD+CE
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Điểm D đối xứng điểm H qua trục AB
⇒ AB là đường trung trực của HD
⇒ AH = AD (tính chất đường trung trực) ⇒ ∆ ADH cân tại A
Suy ra: AB là tia phân giác của ˆDAH⇒ˆDAB=ˆA1DAH^⇒DAB^=A^1
Điểm H và điểm E đối xứng qua trục AC
⇒ AC là đường trung trực của HE
⇒ AH = AE (tính chất đường trung trực) ⇒ ∆ AHE cân tại A
Suy ra: AC là đường phân giác của ˆHAE⇒ˆA2=ˆEAC
ˆDAE=ˆDAH+ˆHAE=2(ˆA1+ˆA2)=2.90độ =180 độ
D, A, E thẳng hàng
AD = AE (vì cùng bằng AH)
nên điểm A là trung điểm của đoạn DE
Vậy điểm D đối xứng với điểm E qua điểm A.
b) Tam giác DHE có HA là trung tuyến và AH=1/2
nên tam giác DHE vuông tại H.
c) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
Cộng vế với vế của (5) và (6) ta có BD+CE=BH+CH hay BD+CE=BC
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |