Cho đường tròn (O;R) và đường thẳng (d) không đi qua tâm O cắt đường tròn tại hai điểm A ; B .Lấy một điểm M trên tia đối của BA kẻ hai tiếp tuyến MC và MD của đường tròn tâm (O) ( trong đó C;D là các tiếp điểm ) .Gọi H là trung điểm của AB và I là giao điểm của đoạn thẳng OM với đường tròn (O)
1) Chứng minh các điểm M ; D ; O ; H ;C cùng nằm trên một đường tròn
2) Chứng minh rằng a) MA.MB = MD2
b) I là tâm đường tròn nội tiếp tam giác MCD
3) Đường thẳng đi qua O và vuông góc với OM cắt các tia MC và MD thứ tự tại P và Q .Tìm vị trí của điểm M trên (d) sao cho diện tích của tam giác MPQ bé nhất
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |