Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì CD ⊥ AB => ∠CAB = 90o
Mà ∠CAB = 1/2 Sđ BC => Sđ BC = 180o
Vậy ba điểm B, O, C thằng hàng.
Chứng minh tương tự ta có B, O’, D thẳng hàng.
a) Trong (O) ta có: ∠CAF = ∠CBF (góc nội tiếp cùng chắn cung CF )
Trong (O’) ta có: ∠DAE = ∠DBE (góc nội tiếp cùng chắn cung DE )
Mà ∠CBF = ∠DBE (đối đỉnh)
Suy ra: ∠CAF = ∠DAE .
b) Nối CF và DE ta có: ∠CFB = 90o (góc nội tiếp chắn nữa đường tròn (O))
∠BED = 90 o (góc nội tiếp chắn nửa đường tròn (O’))
Xét ΔCFB và ΔDEB có:
∠CDB = ∠BED = 90o
∠CBF = ∠DBE (đối đỉnh)
=> ∠FCB = ∠EDB
Mặt khác: ∠FAB = ∠FCB (góc nội tiếp (O) cùng chắn cung FB )
∠EAB = ∠EDB (góc nội tiếp (O’) cùng chắn cung EB )
Suy ra: ∠FAB = ∠EAB hay AB là phân giác của góc ∠EAF .
c) Xét ΔCAE và ΔCBD có: ∠C chung
∠CEA = ∠BDA (góc nội tiếp (O’) cùng chắn cung AB)
=> ΔCAE ∼ ΔCBD (g.g)
=> CA/CB = CE/CD hay CA.CD = CB.CE (1)
d) Chứng minh tương tự câu c) ta có: DA.DC = DB.DF (2)
Từ (1) và (2) suy ra:
CA.CD + DA.DC = CB.CE + DB.DF
⇔ (CA + DA)CD = CB.CE + DB.DF
⇔ CD2 = CB.CE + DB.DF
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |