Trong mặt phẳng tọa độ (xOy), cho parabol (P):y=1/2x^2 và đường thẳng (d):y=(2m-1)x+5.
a) Vẽ đồ thị của (P).
b) Tìm m để đường thẳng (d) đi qua điểm E(7;12).
c) Đường thẳng y=2 cắt parabol (P) tại hai điểm A,B. Tìm tọa độ của A,B và tính diện tích tam giác OAB
.Cho đường tròn tâm (O;R)
có đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia MN lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đường tròn (O;R)
tại điểm K (K khác A), hai dây MN và BK cắt nhau ở E.
a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.
b) Chứng minh CA.CK = CE.CH
c) Qua điểm N kẻ đường thẳng (d) vuông góc với AC, (d) cắt MK tại F. Chứng minh tam giác NFK cân.
d) Khi KE = KC. Chứng minh OK // MN.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |