Cho tam giác nhọn ΔABC(AB<AC), đường cao AH, nội tiếp đường tròn (O). Gọi D và E thứ tự là hình chiếu vuông góc của H lên AB và AC.
a) Chứng minh các tứ giác AEHD và BDEC nội tiếp được đường tròn.
b) Vẽ đường kính AF của đường tròn (O). Chứng minh BC=√AB.BD+√AC.CE và AF⊥DE.
c) Gọi O′ là tâm đường tròn ngoại tiếp ΔBDE. Chứng minh O′ là trung điểm của đoạn thẳng HF.
d) Tính bán kính của đường tròn (O′) biết BC=8cm,DE=6cm,AF=10cm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |