Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD. Gọi A1 là trung điểm của cạnh SA và A2 là trung điểm của đoạn AA1. Gọi (α) và (β) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua A1, A2


Cho hình chóp S. ABCD. Gọi A1 là trung điểm của cạnh SA và A2 là trung điểm của đoạn AA1. Gọi (α) và (β) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua A1, A2. Mặt phẳng (α) cắt các cạnh SB, SC, SD lần lượt tại B1, C1, D1 . Mặt phẳng (β) cắt các cạnh SB, SC, SD lần lượt tại B2, C2, D2. Chứng minh:a) B1, C1, D1 lần lượt là trung điểm của các cạnh SB, SC, SD.b) B1B2 = B2B, C1C2 = C2C, D1D2 = D2D.c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD.

5 Xem trả lời
Hỏi chi tiết
499
0
0
Hà Vy
09/09/2020 20:32:40
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
0
0
Hà Vy
09/09/2020 20:32:49
+4đ tặng

a) Chứng minh B1, C1, D1 lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

⇒A1B1 là đường trung bình của tam giác SAB.

⇒ B1 là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C1 là trung điểm của SC.

• D1 là trung điểm của SD.

0
0
Hà Vy
09/09/2020 20:33:01
+3đ tặng

b) Chứng minh B1B2 = B2B, C1C2 = C2C, D1D2 = D2D.

⇒A2B2 là đường trung bình của hình thang A1B1BA

⇒ B2 là trung điểm của B1B

⇒ B1B2 = B2B (đpcm)

*Chứng minh tương tự ta cũng được:

• C2 là trung điểm của C1C2 ⇒ C1C2 = C2C

• D2 là trung điểm của D1D2 ⇒ D1D2 = D2D.

0
0
Hà Vy
09/09/2020 20:33:11
+2đ tặng
c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A1B1C1D1.ABCD và A2B2C2D2.ABCD
0
0
Hà Vy
09/09/2020 20:33:19
+1đ tặng

Kiến thức áp dụng

+ Nếu một mặt phẳng cắt một trong hai mặt phẳng song song thì sẽ cắt mặt phẳng còn lại và hai giao tuyến cũng song song với nhau.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×