Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC cân tại A, Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN

Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) CMR tam giác AMN cân
b) Kẻ BH vuông góc với AM(H thuộc AM), kẻ CK vuông góc với AN(K thuộc AN). CMR tam giác BHM=tam giác CKN
c) Các đường thẳng HB và KC cắt nhau tại O. Tam giác OBC là tam giác gì? Tại sao?
d)Khi góc BAC=60 độ và BM=CN=BC, tính số đo các góc cuartam giác AMN và xác định dạng của tam giác OBC
e) Kẻ AD vuông góc với BC(D thuộc BC), biết rằng AB=10cm, BC=16 cm. Tính độ dài AD

1 Xem trả lời
Hỏi chi tiết
464
2
1
Phùng Minh Phương
18/02/2021 09:31:26
+5đ tặng

Mình chỉ giải thôi hình bn có thể lấy hình bạn bên dưới nhé :v

a) ∆ABC cân, suy ra ˆB1=ˆC1B1^=C1^

⇒ˆABM=ˆACN⇒ABM^=ACN^

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACNABM^=ACN^

BM = ON (gt)

Suy ra ˆM=ˆNM^=N^

=>∆AMN là tam giác cân ở A.

c) ∆BHM = ∆CKN suy ra ˆB2=ˆC2B2^=C2^

Mà ˆB2=ˆB3;ˆC2=ˆC3B2^=B3^;C2^=C3^ (đối đỉnh)

Nên ˆB3=ˆC3B3^=C3^ .

Vậy ∆OBC là tam giác cân.

d) Khi ˆBAC=600BAC^=600 và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=600BAC^=600 nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=1200ABM^=ACN^=1200 (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=1800−12002=300M^=BAM^=1800−12002=300 .

Suy ra ˆANM=ˆAMN=300ANM^=AMN^=300 .

Và ˆMAN=1800−(ˆAMN+ˆANM)=1800−2.300=1200MAN^=1800−(AMN^+ANM^)=1800−2.300=1200

Vậy ∆AMN có ˆM=ˆN=300;ˆA=1200.M^=N^=300;A^=1200.

+∆BHM có: ˆM=300M^=300 nên ˆB2=600B2^=600 (hai góc phụ nhau)

Suy ra ˆB3=600B3^=600

Tương tự ˆC3=600C3^=600

Tam giác OBC có ˆB3=ˆC3=600B3^=C3^=600 nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×