Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) AC = EB và AC // BE
b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba điểm I , M , K thẳng hàng
c) Từ E kẻ EH ⊥ BC (H ∈ BC). Biết góc HBE = 50o ; góc MEB = 25o. Tính goc HEM và góc BEM.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét tam giác AMC và tam giác BME có :
AM = ME (gt)
BM = MC (gt)
ˆAMC=ˆBME (2 góc đối đỉnh)
→ΔAMC=ΔEMB(c.g.c)
→AC=BE (cặp cạnh tương ứng);
ˆMAC=ˆMEB(cặp góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong do cát tuyến AE cắt \Rightarrow AC // BE.
b) Ta có : ΔAMI=ΔEMK(c.g.c)→ˆKME=ˆAMI (cặp góc tương ứng)
Lại có : ˆAMI+ˆIME=180
→ˆKME+ˆIME=180(ˆKME=ˆAMI)
Vậy I,M,K thẳng hàng.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |