Cho ABC ( Â=90o) có BD là tia phân giác góc B ( D ∈ AC ). Trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh : DE ⊥ BE
b) Chứng minh: BD là đường trung trực của AE
c) Kẻ AH ⊥ BC . So sánh EH và EC
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Xét tam giác ABD và tam giác EBD có
cạnh BD chung
góc ABD = góc EBD [ vì BD là pg góc B ]
BA = BE [ gt ]
Do đó ; tam giác ABD = tam giác EBD [ c.g.c ]
⇒⇒góc BAD = góc BED [ góc tương ứng ]
mà bài cho góc BAD = 90độ
⇒⇒góc BED = 90độ
Vậy DE vuông góc với BE
b.Theo câu a tam giác ABD = tam giác BED
⇒⇒DA = DE nên D thuộc đường trung trực của AE
mà BA = BE nên B thuộc đường trung trực của AE
⇒⇒BD thuộc đường trung trực của AE
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |