cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a, tự c/m
b, tự c/m
c,
Ta có: BH.BC = AB^2
Xét tam giác ABK đồng dạng với tam giác ABI
---> KB/AB = AB/IB ---> BK. BI = AB^2
Từ đó suy ra: BH.BC = BK.BI = (HK - HB).BI = HK. BI - HB.BI
---> BH.BC = AH.BI - HB. BI
---> AH.IB - HB.BC = HB.IB
---> AH/HB - BC/IB = 1(đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |